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Abstract

A model for the quasistatic evolution of martensitic phase boundaries is presented. The model is
essentially the gradient flow of an energy that can contains elastic energy due to the underlying change
in crystal structure in the course of the phase transformation and surface energy penalizing the area of
the phase boundary. This leads to a free boundary problem with a nonlocal velocity that arises from
the coupling to the elasticity equation. We show existence of solutions under a technical convergence
condition using an implicit time-discretization.

1 Introduction

The martensitic phase transformation is a solid-to-solid phase transformation characterized by a change
in crystal structure and the absence of any diffusion or rearrangement of the lattice. It has long been
recognized that a continuum thermoelasticity model of such phase transitions gives rise to piece-wise
smooth solutions or non-classical solutions that are interpreted to be the microstructure that is commonly
observed in materials that undergo this transition [9, 6, 7]. This paper is concerned with global solvability
of a sharp interface model for the evolution of martensitic phase boundaries. Specifically, we start with
a model that is the quasistatic analog of those developed by Abeyaratne and Knowles [1, 2], and develop
a mathematical theory that builds on the work of Luckhaus and Sturzenhecker [12] who studied mean
curvature flow.

Consider a body occupying a region Ω ⊂ Rn, bounded, n ∈ N with a phase boundary Γ separating
two phases that occupy the regions E and Ω \ E at some given time t as shown in Figure 1. The body
may also contain non-transforming regions or inclusions Ai. The total energy of the body is given as

F(E) = Felastic(E) + Fsurface(E)

= min
u

Z
Ω

1

2
|∇u(x)− ξE(x)|2 dx+

Z
Ω

|∇χE | dx (1)

where

ξE(x) =

8<:
ξ+ for x ∈ Ω \ (E ∪A)
ξ− for x ∈ E \A
ξA for x ∈ A.

(2)

The first term in (1) represents the elastic energy and the second the interfacial energy, |·| denotes the
Euclidean norm. For simplicity we take u to be a scalar, though this is not necessary as we discuss later.
Briefly, since the phases have different crystal structures, the strains take the values ξ+ and ξ− in the
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Figure 1: Domain occupied by a phase transforming elastic body

two phases in the absence of any stress. Further, the non-transforming particles take the strain ξA in
the absence of any stress. The first integral penalizes deviations in strain from these preferred values.
Importantly, we assume that the modulus is uniform or independent of phase. We minimize this energy
over all possible displacements subject to appropriate boundary conditions to obtain the elastic energy.
The interfacial energy penalizes the area of the phase boundary.

We are interested in the evolution of the phase boundary Γ. We postulate that its evolution is
determined by the viscous gradient flow of the energy (1); in other words, we postulate that the rate of
change of the position of the boundary is proportional to the variation in total energy with position. To
be precise, let us assume that we have a propagating phase boundary Γ(t). Then it is possible to show
that the rate of change of energy is given by (see Abeyaratne and Knowles [1])

d

dt
F = −

Z
Γ

([[W ]]− 〈σ〉 [[∇u]]− κ) vn dxΓ (3)

where W = 1
2
|∇u− ξE |2 is the elastic energy density, and σ = ∇u− ξE is the stress, and [[·]] and < · >

denote the jump and average of some quantity across the boundary respectively. Also, u is the minimizer
of the elastic energy and satisfies

div (∇u− ξE) = 0 (4)

along with boundary conditions. Therefore its derivatives may be discontinuous across surfaces where
ξE is discontinuous. Following Abeyaratne and Knowles [1], we identify the term in the parenthesis in
the integrand above as the thermodynamic driving force

f = [[W ]]− 〈σ〉 [[∇u]]− κ (5)

and postulate that the evolution of the phase boundary follows the equation

vn = f = [[W ]]− 〈σ〉 [[∇u]]− κ. (6)

Note that inside the inclusions, the elasticity part of the driving force is automatically zero, since neither
W nor ∇u admit a jump discontinuity there. We do, however, keep the curvature part of the driving
force.

Equation (6) defines a free-boundary problem that is the focus of this paper. The normal velocity of
the boundary depends not only on position, but also on the solution of an auxiliary partial differential
equation 4. This makes the free-boundary problem non-local. We provide a precise statement of the
weak formulation of this problem in Section 2. A finite time discretization scheme is introduced and the
convergence of the scheme is proved in Section 3 (Theorem 3.9). We prove in Section 4 that the limit of
the time discrete solution as the time-step goes to zero satisfies the free boundary problem in the weak
sense under the technical condition that there is no loss of surface energy (Theorem 4.3). The proofs
follow Luckhaus and Sturzenhecker [12], though we have to address difficulties that arise from a lack of
smoothness of the elastic strain fields. Specifically, solutions of (4) are not Lipschitz and thus the driving
force is not bounded in L∞. We overcome this by mollifying the transformation strain ξE and then take
a careful double-limit.

To our knowledge, this is the first attempt towards a mathematically rigorous treatment of the
evolution of martensitic phase boundaries under linear or viscous kinetics (6). We note that similar non-
local free boundary problems have been studied in the context of gradient flows in metric spaces [5] and
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rate-independent processes [13]. The main mathematical difference is that a rate independent process, i.e.,
a gradient flow with respect to the L1 norm (or any other gradient flow in a metric space) automatically
yields better compactness properties for a time-discrete approximation. In this work, we have to make a
density estimate by Luckhaus and Sturzenhecker applicable to our nonlocal case (Lemma 3.6).

In a separate paper, we examine the role of the non-transforming precipitates in some detail [8]. We
introduce a shallow interface approximation, and show in this approximation that the effective motion
of a phase boundary propagating locally with a linear or viscous kinetics in a periodic heterogeneous
medium has a stick-slip behavior. In other words, there is a critical macroscopic driving force below
which the interface is macroscopically stuck and the effective velocity grows singularly beyond. Thus,
microscopic linear kinetics leads to macroscopic rate-independent kinetics (at least at small velocities) in
the presence of heterogeneities.

The model presented here is written in terms of a scalar displacement, though this is not necessary.
The proofs hold for vector displacements as well. Further, the results also holds for the problem of
geometrically linear elasticity where the strain is the symmetrized displacement gradient by invoking the
Korn’s inequality in order to render the problem of finding the displacement elliptic. This ensures that
the regularity estimates for the displacement gradient are still valid.

2 Statement of the free boundary problem

Given an initial phase distribution characterized by a set of finite perimeter E0 ⊂ Ω, contained within
the domain Ω with C2,α (Hölder continuous) boundary, α > 0, the free boundary problem, for a fixed
final time T > 0, can be posed in the weak form as follows on the time-space domain ΩT = [0, T ]× Ω.

(P) Find functions χ : ΩT → {0, 1} ∈ L∞([0, T ];BV (Ω)), v : ΩT → R ∈ L1([0, T ];L1(|∇χ(t)|)), and
u : ΩT → R ∈ L2([0, T ];H(Ω)), such thatZ

ΩT

„
div ζ − ∇χ|∇χ|∇ζ

∇χ
|∇χ|

«
|∇χ|+ (7)Z

ΩT

(W · Id−∇u⊗ σ)∇ζ +

Z
ΩT

vζ∇χ = 0

for all ζ ∈ C∞(ΩT ,Rn), ζ = 0 on ∂Ω× (0, T ),

and Z
ΩT

χ∂tξ +

Z
Ω

χE0ξ(0) = −
Z

ΩT

vξ |∇χ| (8)

for all ξ ∈ C∞(ΩT ,Rn), ξ = 0 on ∂Ω× (0, T ),

and ξ(T ) = 0,

as well as Z
ΩT

(∇u− ξE)∇φ = 0 (9)

for all φ ∈ C∞([0, T ];TuH(Ω)).

We consider u in the space H = {u ∈ H1(Ω), together with boundary conditions}. Its dual space
is denoted by H ′. The possible boundary conditions include Dirichlet as well as Neumann boundary
conditions, together with a condition on the average of u in order to make the elliptic problem well-
posed. In fact, any boundary condition such that ||∇u||L∞ < C ||f ||C0,α holds for solutions of 4u = f is
admissable for the problem. See [11] for an in depth discussion on elliptic regularity. The tangent space
of H at u is denoted by Tu(H).

In order to see that a smooth solution of (7)–(9) indeed solves the original problem (6), consider, at
a certain time t ∈ (0, T ), a phase boundary Γ of class C2. For the curvature term, first note that, by the
surface divergence theorem, we have Z

Γ

divΓ Pζ = 0, (10)
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where Pζ is the projection of ζ onto the tangent space of Γ. Now, by direct calculation, we have

0 =

Z
Γ

∂k(ζi − ζjnjni) · (δik − nink) (11)

=

Z
Γ

ζi,k · (δik − nink)−
Z

Γ

ζjnj∂kni · (δik − nink)

−
Z

Γ

∂k(ζjnj)ni · (δik − nink)

=

Z
Ω

„
div ζ − ∇χ|∇χ|∇ζ

∇χ
|∇χ|

«
|∇χ|

−
Z

Ω

divΓ n ζ∇χ

−
Z

Γ

∂i(ζjnj)ni − ∂k(ζjnj)nk

=

Z
Ω

„
div ζ − ∇χ|∇χ|∇ζ

∇χ
|∇χ|

«
|∇χ|

+

Z
Ω

−κ ζ∇χ,

where we are summing over repeated indices. We have also used the fact that—since the phase boundary
is smooth—one can extend the function n (the normal to the hypersurface, taken inward the set χ), to
a neighborhood of Γ.

For the nonlocal part of equation (7), first note that equation (9) ensures that div σ = 0 on E and
Ω \ E, and [[σ · n]] = 0 on the phase boundary Γ. Therefore the term involving derivatives of σ that one
obtains after integrating by parts vanishes. Now one can calculateZ

Ω

(W · Id−∇u⊗ σ)∇ζ (12)

=

Z
Ω

([[W ]]− [[∇u]] 〈σ〉) ζ∇χ

+

Z
Ω\Γ

„
∂W

∂∇u · ∇
2u−∇2u · σ

«
· ζ.

Here, we have split the divergence of the energy-momentum tensor up into a part that lives on the phase
boundary, and a term that lives on the smooth part of the domain. The latter term vanishes, because
here the energy density only depends on ∇u, and not explicitly on the position.

Putting together the two calculations, we getZ
Ω

(−κ+ [[W ]]− [[∇u]] 〈σ〉 − v) ζ∇χ = 0, (13)

for all ζ ∈ C∞0 (Ω), which yields v = f on Γ. For a smoothly evolving phase boundary Γ, equation (8) is
the definition of the normal velocity v as the distributional time derivative of the evolving set.

3 The time discrete approximation

3.1 Introduction to the finite time discretization scheme

For a fixed time-step h, and a set of finite perimeter E0, consider the following minimization problem.
Find a set E, minimizing the energy

F(E) = Felastic(E) + Fsurface(E) +

Z
EME0

1

h
dist(x, ∂E0) dx. (14)

After proving that such a minimizer always exists, one can iteratively apply the minimization scheme and
define an approximate solution as an in-time piecewise constant interpolation between the minimizers for
each time step. The ‘distance’ term (an integral over the symmetric set difference of E and E0, denoted
here by E M E0) in the energy is chosen such that its variation, for small h, is approximately the normal
velocity of the phase boundary. This is the approach taken in [3, 12] for the related problem of a mean
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curvature flow. The second task is then to show convergence of the approximate solutions, as h→ 0, to
a suitable solution of the original problem.

Since the sequence of piecewise constant approximate solutions is a sequence of characteristic functions
on the space-time domain Ω × [0, T ], it naturally converges weakly* in L∞. It is however necessary to
establish strong convergence here so that the resulting limit is again a characteristic function and one can
view the problem as a set evolution. In order to do this, it is necessary to bound the total variation of the
sequence of solutions uniformly both in space and in time. The uniform bound in space will be obtained
directly from the uniform bound on the perimeter of the solutions. In order to derive the uniform bound
in time, a density estimate on minimizing sets of the time-step problem is used in [12]. This estimate
requires the forcing on the phase boundary to be uniformly bounded in L∞. Stress concentrations in
the elasticity case, however, prevent its direct use. In order to overcome this difficulty, we regularize the
elastic energy density by mollifying the transformation strain. The size ε of the mollifier can then vanish
in the right relation with the time-step h and one can still establish strong convergence of the solution.
This is detailed in the following section, where we use many similar ideas as [12].

3.2 Local estimates on the elastic energy

In order to prove compactness of the time discrete solutions later, the aforementioned stress concentra-
tions must only occur in a very controlled manner. To this end, we regularize the transformation strain
and will let the regularization tend to zero together with the time step in an appropriate way.

We first therefore define the mollified transformation strain

ξεE(x) = (ηε ∗ ξE)(x) =

Z
Ω

ηε(x− y)ξE(y)dy, (15)

where ηε is a standard mollifier as defined in [10], Appendix C. Its L∞-norm scales like εn. Consider
now the elastic energy

Felastic(E) = min
u∈H

Z
Ω

1

2
|∇u− ξE |2 (16)

and also the mollified elastic energy

Fεelastic(E) = min
uε∈H

Z
Ω

1

2
|∇uε − ξεE |2 . (17)

It is clear from the theory of elliptic equations that such a minimizer always exists, since the transfor-
mation strain is a function in L2. One can then derive the following a priori bounds.

Lemma 3.1. There exist ε0 > 0 and a constant M independent of E and ε such that, for ε < ε0, the
following hold.
i. 0 < Felastic(E) < M and 0 < Fεelastic(E) < M .
ii. For u, uε attaining the minimum in Felastic(E) and Fεelastic(E), respectively, we find ||∇u||L2 < M
and ||∇uε||L2 < M .
iii. ||∇uε||L∞ < M

εn+2 .

Proof. i. Consider the test function u = 0 on Ω. Then
R

Ω
|ξE |2 < m(Ω) max

`
ξ±
´2

. The same holds for
Fεelastic.
ii. Since div ξE ∈ H ′, we know that u solves the equationZ

Ω

∇u · ∇u =

Z
Ω

ξE · ∇u. (18)

Thus,
||∇u||2L2 ≤ ||ξ||L2 ||∇u||L2 (19)

and the same holds for uε.
iii. This follows directly from the assumption on the regularity for the boundary of Ω, namely that for
u solving 4u = f , we have

||∇u||L∞ ≤ C ||f ||C0,α . (20)

Since ||div ξε||C0,α = ||∇ηε ∗ ξ||C0,α < C 1
εn+2 , the proof is complete.

Next, we will prove an estimate of the change in mollified elastic energy if an area of a certain size
changes from one transformation strain to the other. Such a proposition will make it possible to use the
aforementioned density lemma for balls of small enough radius.
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Lemma 3.2. There exists a uniform constant M such that given two sets of finite perimeter E1 and E2,
we have

|Fεelastic(E1)−Fεelastic(E2)| ≤ M

εn+2
·m(E1 M E2), (21)

where m(A) is the n-dimensional Lebesgue measure of a set A.

Proof. Assume that Fεelastic(E1) ≤ Fεelastic(E2). Let A = E1 M E2 and ξA, supported on A, such that
ξεE2 = ξεE1 + ξA. Consider the minimizer uε1 of the energyZ

Ω

|∇uε1 − ξεE1 |
2 (22)

and use it as a test function for the larger energy. This yields

Fεelastic(E2) = min
u

Z
Ω

1

2
|∇u− ξεE2 |

2

≤
Z

Ω

1

2
|∇uε1 − ξεE1 − ξA|

2

=

Z
Ω

1

2
|∇uε1 − ξεE1 |

2

+

Z
Ω

1

2
|ξA|2 +

Z
Ω

ξE1 · ξA −
Z

Ω

d∇u1 · ξA

≤ Fεelastic(E1)

+
1

2
m(A)

`˛̨˛̨
|ξA|2

˛̨˛̨
L∞

+ 2 ||ξE1 ||L∞ ||ξA||L∞
´

+m(A) ||ξA||L∞ ||∇u
ε
1||L∞

≤ Fεelastic(E1) +
M

εn+2
m(A). (23)

3.3 The implicit time discretization

We discretize (P) using an implicit finite time-step scheme, as it was heuristically introduced in the
beginning of this section. For h > 0, ε > 0, consider the energy function

Fh,ε(E,E0) = min
uε∈H

Z
Ω

|∇uε − ξεE |2 +

Z
Ω

|∇χE |+
1

h

Z
EME0

dist(·, ∂E0). (24)

We will call the first term the elastic term, the second term is the perimeter term and the third term is
the distance term.

Theorem 3.3. For a given set of finite perimeter E0, the set function Fh,ε(·, E0) admits a minimizer
E. Furthermore, E has finite perimeter.

Proof. The energy Fh,ε is non-negative, and thus is uniformly bounded from below. Consider therefore
a minimizing sequence of sets {Ek}∞k=1 for the energy Fh,ε. The elastic energy term in Fh,ε is uniformly
bounded according to Lemma 3.1. The third term, the distance term, is—for a fixed h—also uniformly
bounded from both above and below. Therefore, one can find a (renumbered) subsequence such thatR

Ω
|∇χEk |, the perimeter of Ek is bounded uniformly in k. Thus, by Theorem 4.7 and 4.8 in [4] (SBV

closedness and compactness), there exists a (renumbered) subsequence, and a set of bounded perimeter
E, such that

χEk → χE in L1. (25)

It remains to be shown that Fh,ε is lower semicontinuous with respect to this convergence. First, by
Theorem 4.7 in [4], the perimeter term of Fh,ε is lower semicontinuous. The strong convergence in L1

also immediately implies the continuity of the distance term. For the elastic term, note that the solution
operator for the minimization problem of uε is continuous with respect to ξεE in H ′. It is therefore
clear that the minimizers and minima uεi of

R
Ω
|∇uεk − ξεEk |

2 converge to a minimizer and minimum ofR
Ω
|∇uεk − ξεE |2. This establishes the lower semicontinuity of Fh,ε.
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Given an initial value E(0) = E0, and setting h = T
N

, N ∈ N we can now iteratively, up to k = N ,
define the time-discrete solution to be

Eh,ε(t) =


argmin Fh,ε(·, Eh,ε(t− h)) if t = kh

Eh,ε((k − 1)h) for t ∈ ((k − 1)h, kh)
(26)

as well as

uh,ε(t) =


argmin Fεelastic(Eh,ε(t)) if t = kh

uh,ε((k − 1)h) for t ∈ ((k − 1)h, kh).
(27)

This is the piecewise constant interpolation between the iterated minimizers of the time-step minimization
problem. Furthermore, we define for a sequence {hi}∞i=1 such that h→ 0, the sequence of time-discrete
solutions {Ehi,ε(t)}∞i=1.

3.4 Compactness of the time-discrete solution

We now show that the sequence of time-discrete solutions is strongly equicontinuous in h. This enables
us to use the Frechet-Kolmogorov theorem to establish strong convergence of a subsequence.

For the rest of this section we will assume the scaling ε ≥ h1/n and write Fh(E,E0) := Fh,ε(h)(E,E0),
as well as Eh(t) := Eh,ε(h)(t). The scaling ε = h1/(n+2) is sufficient for the compactness estimates, but
for the estimates in Section 4 we need to choose ε = h1/(2(n+2)). The constant C is independent of h,
but may depend on n, Ω, T , and E0, and possibly change from line to line.

Compactness in space. The compactness in the spatial variables follows directly from the uniform
bound on the perimeter of the transformed set E, which we presently prove.

Lemma 3.4. Let Eh(t) be the piecewise constant solution constructed above. ThenZ
Ω

˛̨
∇χEh(t)

˛̨
≤ C. (28)

Proof. Let C = supε>0 Fεelastic(E0) +
R

Ω
|∇χE0 | <∞ by Lemma 3.1. Assume, by contradiction, that for

some h > 0 and some t < T , we have
R

Ω

˛̨
∇χEh(t)

˛̨
> C. That means that there must exist a k ≤ N ,

such that

Fεelastic(Eh(kh)) +

Z
Ω

˛̨
∇χEh(kh)

˛̨
> Fεelastic(Eh((k − 1)h)) +

Z
Ω

˛̨
∇χEh((k−1)h)

˛̨
, (29)

since

Fh
ε

elastic(E0) +

Z
Ω

|∇χE0 | < C (30)

This means, however, that Eh(kh) can not be a minimizer of the finite time-step problem.

Proposition 1.2 in [12] can now be applied to assert compactness in space. We state this proposition
here for the convenience of the reader.

Proposition 3.5 (Luckhaus-Sturzenhecker). The discrete solution Eh(t) fulfillsZ T

0

Z
Ω

˛̨
χEh(t)(x+ se)− χEh(t)(x)

˛̨
dxdt −→ 0 as s→ 0 (31)

uniformly in h for each unit vector e ∈ Rn.

Compactness in time. We now seek to establish a uniform bound on the total variation of the
transformed set E(t) in time. The major difficulty here is the inability of the distance term in the energy
Fh to yield such a bound by itself. If one were to assume, for example, a rate-independent evolution
model, the distance term would be replaced by a penalization of the area E0 M E via a term of the form

m(E0 M E). (32)

Such an evolution law therefore automatically yields a uniform bound on the total variation of E(t),
which then leads to the necessary strong compactness.
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Impossible Possible

x0

ρ < ρ0

E

x0

Eρ < ρ0

Figure 2: For a ball centered on the boundary of the set E with small enough radius, the set E actually has
to intersect the boundary of the ball. The situation on the left is therefore excluded, a possible minimizing
set is shown on the right for comparison.

In our case, however, since one can find a dense set Ebad in Ω with arbitrarily low elastic and surface
energy, the situation is more complicated. For E0 = Ebad, no matter what the set in the next time-
step looks like, the distance term vanishes. This way, one can generate a sequence of faster and faster
oscillating phases on a large part of the domain. Such a sequence will certainly not converge strongly. It is
the goal now to exclude such bad sets a priori through some assertions on the geometric properties of sets
that minimize the time-step energy Fh. We thus in the following extend the density estimate—Lemma
1.3 in [12] to include the elastic energy term.

Lemma 3.6 (L n-density of minimizing sets). Let f ∈ L∞(Ω) and assume E minimizes the functional

F(E) = Fεelastic(E) +

Z
Ω

fχE +

Z
Ω

|∇χE | (33)

among all measurable subsets of Ω. Then the density estimate,

θ ≤ −
Z
Bρ(x)

χE ≤ 1− θ, (34)

holds for all x ∈ ∂E, such that dist(x, ∂Ω) > ρ, and for all 0 < ρ < γn

2
“
||f ||L∞+ M

ε(n+2)

”
ω

1/n
n

:= ρ0 such that

Bρ(x) ⊂ Ω. The constant M is the constant from Lemma 3.2 and θ is given by θ =
`

1
4

´n
. The constant

ωn is the L n−1 measure of the unit sphere in Rn; the constant γn is given by γn = nω
1/n
n .

For x ∈ E and x ∈ Ec, one has, respectively,

θ ≤ −
Z
Bρ(x)

χE (35)

and

θ ≤ −
Z
Bρ(x)

χEc (36)

Furthermore, if f ≥ 0 in Bρ(x), one has

θ ≤ −
Z
Bρ(x)

χE (37)

for 0 < ρ < γnε
n+2

2Mω
1/n
n

, and for f ≤ 0 the equivalent estimate holds for Ec. If, above that, one has that

f ≥ M
εn+2 in Bρ(x), the bound on the radius can be dropped entirely on the estimate for E.

8



Proof. We only show the lower density bound; the upper bound can be proved by considering the set
Ec. First we show that for ρ < ρ0 and x as above the set E ∩Bρ(x) contains a part of the boundary of
Bρ(x), i.e., Z

∂Bρ(x)

χE dHn−1 > 0. (38)

The excluded situation as well as the possible behavior are illustrated in Figure 2. If that does not hold

for some r ∈ (0, ρ), we conclude from the isoperimetric inequality
R

Rn |∇χE | ≥ γn
`R

Rn χE
´n−1

n that

γn

˛̨̨̨
˛
Z
Br(x)

χE

˛̨̨̨
˛
n−1
n

≤
Z
Br(x)

|∇χE | . (39)

Further, the minimality of the set E requiresZ
Br(x)

|∇χE |

≤
„
||f ||L∞ +

M

εn+2

«Z
Br(x)

χE

=

„
||f ||L∞ +

M

εn+2

«
m(χE ∩Br(x)) (40)

by comparing the energies of the sets E and the set E \Br(x). Therefore

ωnρ
n ≥

Z
Br(x)

χE ≥

 
γn

||f ||L∞ + M
εn+2

!n
, (41)

which contradicts the upper bound for ρ given above.
In the second step we define, for a fixed σ ∈ (0, ρ

2
), the comparison set

E′ = E \
“
B ρ

2 +σ(x) \B ρ
2−σ

(x)
”
. (42)

For the volume V (σ) := m(E ∩
“
B ρ

2 +σ(x) \B ρ
2−σ

(x)
”

, using again the isoperimetric inequality and the

minimality of E, we find

γnV (σ)
n−1
n −A+(

ρ

2
− σ)−A−(

ρ

2
+ σ)

≤ A−(
ρ

2
− σ) +A+(

ρ

2
+ σ) +

„
||f ||L∞ +

M

εn+2

«
V (σ). (43)

Here A+(r), A−(r) denote the sectional surfaces of E with the sphere ∂Br(x), defined by the outer and
inner trace of χE on ∂Br(x), respectively. Taking the derivative of the volume of the set in the sense of
measures shows that, for almost all σ,

d

dσ
V (σ) = A+(

ρ

2
− σ) +A−(

ρ

2
+ σ) = A−(

ρ

2
− σ) +A+(

ρ

2
+ σ). (44)

Therefore we get the differential inequality,

d

dσ
V (σ) ≥ γn

4
V (σ)

n−1
n , (45)

where we used that due to the bound on ρ,

V (σ) ≤

 
γn

2
`
||f ||L∞ + M

εn+2

´!n . (46)

Integration of this equation yields Z
Bρ(x)

χE ≥
“γn

4n

”n
ρn, (47)

which is the assertion with θ = 1
ωn

`
γn
4n

´n
= 1/4n.

The further assertions can be proved by changing the corresponding terms in (43).
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Γk

2ch

Dfar ch

Dnear
Γk−1

Figure 3: Illustration of Lemma 3.7

Lemma 3.7 (Bound on the variation in time of χhE(t)). There is a constant C ∈ R, independent of h,
such that the sets Ek = Eh(kh), for k ≤ N satisfy

NX
k=1

Z
Ω

˛̨
χEk − χEk−1

˛̨
< C. (48)

Proof. We will prove this relation for Ek\Ek−1, the estimate for Ek−1\Ek follows by a similar procedure.
The proof is illustrated in Figure 3.

First, we split the set

Ek \ Ek−1 = {x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) > ch}
∪ {x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) ≤ ch} (49)

=: Dfar ∪Dnear. (50)

The constant c is chosen such that

c <
γn

2ω
1/n
n

1

diam(Ω) +M
, (51)

which means that the energy Fh(E,E0) satisfies the conditions of the density estimate for balls of radius
2ch, because of the used scaling ε ≥ h1/(n+2).

For the first term in (50), we use the distance term in F to obtain

|{x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) > ch}| < 1

ch

Z
EkMEk−1

dist(x, ∂Ek−1)dx (52)

≤ 1

c

„Z
Ω

˛̨
∇χEk−1

˛̨
−
Z

Ω

|∇χEk |+ F
ε
elastic(Ek−1)−Fεelastic(Ek)

«
. (53)

The second set is estimated by means of the density lemma. We can cover it, up to a distance of 4ch
to the boundary of Ω, with a family of balls B ∈ B with radius ρ = 2ch, all completely contained in Ω,
with center x ∈ ∂Ek−1, such that the maximum number of balls containing one point is bounded by a
constant D(n). Employing the density lemma and an isoperimetric inequality in the interior of a ball,
we obtain Z

B

χEk\Ek−1 ≤ ωnρ
n ≤ cρ

Z
B

˛̨
∇χEk−1

˛̨
(54)

for each B. Summation over all B ∈ B and adding the boundary term yields

|{x ∈ Ek \ Ek−1 : dist(x, ∂Ek−1) ≤ ch}| ≤ D(n)Cch

Z
Ω

˛̨
∇χEk−1

˛̨
+ Ch. (55)

10



From (53) and (55) we get

NX
k=1

m(Ek \ Ek−1)

≤
NX
k=1

1

c

„Z
Ω

˛̨
∇χEk−1

˛̨
−
Z

Ω

|∇χEk |+ F
ε
elastic(Ek−1)−Fεelastic(Ek)

«

+

NX
k=2

D(n)Cch

Z
Ω

˛̨
∇χEk−1

˛̨
+ C + m(Ω)

< C. (56)

The summation boundary N is given by N = T
h

.

Using the estimate (56), compactness in time now follows from Proposition 1.6 in [12].

Proposition 3.8 (Luckhaus-Sturzenhecker). We have thatZ t−τ

0

Z
Ω

˛̨
χEh(t+τ)(x)− χEh(t)(x)

˛̨
dxdt < cτ. (57)

Convergence of the discrete solution The previous compactness considerations lead to the
following:

Theorem 3.9 (Convergence). The sequence χEh(t) contains a subsequence, converging strongly in

L1(ΩT ) and weakly in BV (ΩT ), with a limit function

χ : ΩT → {0, 1} ∈ L∞((0, T );BV (Ω)). (58)

Additionally, we have
uh → u ∈ L2((0, T );H(Ω)) (59)

strongly in L2((0, T );H(Ω)) for the same subsequence.

Proof. Compactness in space and compactness in time leads to the applicability of the Frechet-Kolmogorov
theorem for the sequence χEh , so the convergence of the characteristic functions is strong. Let E be the
set {x ∈ ΩT such that χ(x) = 1} corresponding to the limiting characteristic function.We then also have
that

ξεEh → ξE (60)

strongly in L2((0, T );L2(Ω)). Denote by T the operator that maps a function ξ(·, t) in L2 to the weak
solution of 4u(·, t) = div ξ(·, t). This is a continuous linear operator from L2(Ω) to H(Ω). It follows
that the operator

S : L2((0, T );L2(Ω))→ L2((0, T );H(Ω)) (61)

defined by applying T at every time t ∈ (0, T ) is also linear and continuous. We therefore have strong
convergence of u, due to the strong convergence of ξεEh → ξE from above.

Remark 3.10. Note that this ensures also that ∇χEh ⇁ ∇χ in rca(ΩT ).

4 The limit problem

In the previous section is was proved that the sequence of discrete solutions contains a strongly converging
subsequence. The task in this section is to prove that the limiting function is a solution to Problem (P).
It is necessary, however, to require that, in the limit, there is no loss of surface area. This ensures the
convergence of |∇χEh | in the sense of Radon measures. We thus from now on assume thatZ

ΩT

|∇χEh | →
Z

ΩT

|∇χ| . (62)

As in [12], we define the discrete normal velocity vhn(x) = 1
h

sdist(x, ∂Eh(t−h)), and it is necessary to
prove some bounds on it, in order to show its convergence to a suitable vn in the limiting equation. For
the remainder of this section we will assume the scaling ε = h1/(2(n+2)). In the proofs, we only consider
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the part of A ⊂ Ω where (Eh(t− h)∩A) ⊂ (Eh(t)∩A), i.e, where the set E expands. This ensures that
the dissipation term from the implicit time discretization can be written as

1

h

Z
Eh(t)M(Eh(t−h)

dist(·, ∂Eh(t− h)) =

Z
Ω

fξEh(t) (63)

with positive f . Thus, inequality (37) from the density estimate applies for balls of radius of order h1/2.
The part of Ω where f ≤ 0 can be treated analogously.

Lemma 4.1 (Estimates on vhn). There exists c ∈ R such that we have
i)
˛̨˛̨
vhn
˛̨˛̨
L∞(Eh(t)MEh(t−h))

< ch−1/2

ii)
R
{||vhn||>Q}∪ΩT}

˛̨
vhn
˛̨
|∇χEh | < c

Q

iii)
R

ΩT
(vhn)2 |∇χEh | < c.

Proof. i) Let x ∈ Eh(t) \ Eh(t− h) such that˛̨̨
vhn(x)

˛̨̨
=

1

h
dist(x, ∂Eh(t− h)) ≥ ch−1/2 (64)

for some t. The case of x ∈ Eh(t − h) \ Eh(t) can be treated analogously. We compare the energy of
the set Eh(t) with the set E′ = Eh(t) \ B 1

2 ch
1/2(x), where a ball of radius 1

2
ch1/2 around x has been

cut out. In order for the set Et to be energy minimizing, the additional surface energy that such a ball
would cause must be larger than the gain in the distance and the elastic part of the energy. We get

nωn

„
1

2
ch1/2

«n−1

≥
„

1

2
ch−1/2 −Mh−1/2

«Z
B 1

2 ch
1/2 (x)

χEh(t). (65)

For c sufficiently large, we have ch−1/2 > Mh−1/2, and the restriction on the size of the balls in the
density estimate can be dropped. We therefore get a lower bound for

R
B 1

2 ch
1/2 (x)

χEh(t), which leads to

nωn

„
1

2
ch1/2

«n−1

≥
„

1

2
ch−1/2 −Mh−1/2

«
θωn

„
1

2
ch1/2

«n
, (66)

which, for a possibly even larger c, yields a contradiction.

ii) From i) above, we have that
R
{||vhn||>Q}∪ΩT}

˛̨
vhn
˛̨
|∇χEh | = 0 unless Q ≤ ch−1/2, we can therefore

assume that h satisfies this relation. Pick c̃ such that c̃
2
Qh < γnε

n+2

2Mω
1/n
n

, the constant from the density

estimate, noting that f ≥ 0 in the region we are considering here.
Consider now, for Q > 0, the set

F = ∂Eh(t) ∩ {2lQ <
˛̨̨
vhn

˛̨̨
≤ 2l+1Q} for a fixed t = kh; k, l ∈ N (67)

and a ball B = B c̃
2Qh

(x), x ∈ F . By applying the density estimate, we obtainZ
B∩(Eh(t)MEh(t−h))

˛̨̨
vhn

˛̨̨
> 2lcQn+1hn. (68)

The energy minimizing property of Et, however, requires thatZ
B

˛̨̨
vhn

˛̨̨ ˛̨
∇χEh(t)

˛̨
< 2l+1c′Qnhn−1 + 2l+1hnQn+1

„
c̃

2

«n
M√
h
< 2l+1c′′Qnhn−1. (69)

For the second inequality, one has to require h to be small enough, so that the first term dominates.
From here on one can continue as in the proof of Lemma 2.1 in [12].
iii) Starting like in [12], we take balls B of radius 2l−1Mh and getZ

B∩Eh(t)MEh(t−h)

“
vh
”2

|∇χEh | <
“

2l+1Q
”2

c
“

2l−1Qh
”n−1

+
“

2l+1Q
”2

c
“

2l−1Q
”n

hn
M√
h
. (70)

Since, from i),
˛̨˛̨
vhn
˛̨˛̨
L∞(Eh(t)MEh(t−h))

< ch−1/2, we only need to consider l so that 2l+1Q ≤ ch−1/2.

This ensures that the first term still dominates on the right hand side.
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With these estimates at hand, it is possible to employ Proposition 2.2 from [12] to ensure that the
error in the discrete velocity vanishes.

Proposition 4.2 (Luckhaus-Sturzenhecker). If n < 7, the error estimate in the discrete curvature
equation vanishes as h→ 0, i.e,Z

ΩT

„
∂−ht χEh −

1

h
sdist

“
·, ∂h(t− h)

”
|∇χEh |

«
η −→ 0 (71)

as h→ 0 for all η ∈ C0
0 (ΩT ,R).

The symbol ∂−ht denotes the discrete backward time derivative with time-step h.
Now it is possible to state the conditional existence theorem.

Theorem 4.3 (Existence). Let n ≤ 6. If the time discrete solution satisfies
R

ΩT
|∇χEh | →

R
ΩT
|∇χ|,

then there exist functions χ : ΩT → {0, 1}, vn : ΩT → R, and u : ΩT → R that solve Problem (P).

Proof. Noting that, for a fixed t = hl, l ∈ N, the minimizer of the time discrete problem, and thus the
time discrete solution, satisfies the weak equationsZ

Ω

„
div ζ − ∇χ

h

|∇χh|∇ζ
∇χh

|∇χh|

« ˛̨̨
∇χh

˛̨̨
+Z

Ω

(W · Id−∇u⊗ σ)∇ζ +

Z
Ω

1

h
sdist(·, ∂Et−h)ζ∇χh = 0 (72)

for ζ ∈ C∞0 (Ω,Rn) and Z
ΩT

“
∇uh − ξh

1/(2(n+2))

E

”
∇φ = 0 (73)

for φ ∈ TuH(Ω). The first and the third term in equation (72) are the same as in [12] and are the inner
variation of the surface energy and the dissipation. The middle term is the inner variation of the elastic
energy when perturbing the set χh. Equation (72) is the weak equation for the elliptic problem.

One can now apply the proof of Theorem 2.3 in [12]. The convergence of the time discrete solution of
the elliptic problem to a solution of the limit problem is ensured by the strong convergence established
by Proposition 3.9.
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